
A Public Dataset For the ZKsync Rollup∗

Maria Inês Silva†
Matter Labs

Johnnatan Messias†
Matter Labs

Benjamin Livshits
Matter Labs

Imperial College London

Abstract
Despite blockchain data being publicly available, practical chal-
lenges and high costs often hinder its effective use by researchers,
thus limiting data-driven research and exploration in the blockchain
space. This is especially true when it comes to Layer 2 (L2) ecosys-
tems, and ZKsync, in particular.

To address these issues, we have curated a dataset from 1 year
of activity extracted from a ZKsync Era archive node and made it
freely available to external parties. In this paper, we provide details
on this dataset and how it was created, showcase a few example
analyses that can be performed with it, and discuss some future
research directions. We also publish and share the code used in
our analysis on GitHub to promote reproducibility and to support
further research.

1 Introduction
The blockchain ecosystem is built on the principles of decentral-
ization and transparency. However, there remains a significant
challenge for end users and non-technical researchers: blockchain
data is not easily accessible. This challenge is hindering the wide-
spread adoption of blockchain technology, which should be more
easily accessible.

Currently, blockchain data can be obtained by deploying an
archive node in the case of chains based on Ethereum Virtual Ma-
chine (EVM) [9, 14, 34, 37], or a full node for Bitcoin [13]. However,
this requires a machine with high bandwidth and high-speed stor-
age to keep the blockchain fully synced. In other words, individual
deployment of archive nodes is not a practical solution. There-
fore, it would be advantageous if we could offer an alternative that
improves this situation. Additionally, users can gather the data
through Remote Procedure Calls (RPCs) providers. However, gath-
ering data this way can be challenging for some non-technical users
and researchers and is usually costly. Alternatively, users can de-
pend on external data sources such as Etherscan [18], Arbiscan [10],
Dune [17], ZettaBlock [49], Nansen [6], and similar platforms. Al-
though they may provide an interesting solution, they may prove
to be costly in the long run, and do not meet the requirements of
certain end-users, particularly those engaged in research that relies
on easily and cheaply accessible data.

We believe that anyone requiring blockchain data should have a
straightforward and hassle-free way to access them, without worry-
ing about infrastructure or hardware. This data has significant value
for research purposes, such as alerting [29], Airdrop designs [33], an-
alyzing Maximal-Extractable Value (MEV) [21, 22, 31], Automated
∗This research article is a preliminary work of scholarship and reflects the authors’
own views and opinions. It does not necessarily reflect the views or opinions of any
other person or organization, including the authors’ employer. Readers should not rely
on this article for making strategic or commercial decisions, and the authors are not
responsible for any losses that may result from such use. The authors acknowledge
the help of Igor Borodin from Matter Labs and his assistance in hosting the dataset.
†Both authors contributed equally to the paper.

Market Maker (AMM) [19], and potentially improving the adoption
of particular chains such as ZKsync and other Layer-2 blockchains
(L2s) rollups within the research scope [23, 30]. In addition, it can
contribute to the growth of these ecosystems as more researchers
become involved in the field.

In a recent talk, a company called Paradigm emphasized that
to empower the blockchain community with the necessary data
analysis capabilities, we must make blockchain data more accessi-
ble [7]. By ensuring that these data are available affordably, quickly,
and with minimal effort, we can effectively address the challenge
of data unavailability in our ecosystem. They introduced a novel
EVM blockchain node developed in Rust, known as Reth that can
be applied to EVM-compatible blockchains. Paradigm provided an
endpoint to their archive node allowing anyone to make requests
to their node. Similar initiatives have been provided by Matter
Labs and other companies interested in making blockchain data
more accessible [9, 34, 37], Nevertheless, users would need to build
high-efficiency code to gather all the data they need, which could
invalidate this process for some users due to network delays or lack
of coding skills.

More recently, Paradigm [39, 40], BigQuery [16] and other re-
search groups [28]) have made blockchain data accessible and avail-
able by providing them in an easy-to-download and-load schema.
In that sense, we followed through and decided to make our ZKsync
fully available and accessible to any user or researcher. Therefore,
we provide 1 year of ZKsync data covering the period of Febru-
ary 14th, 2023, (block 1) and March 24th, 2024, (block 29,710,983).
More details of the dataset are available in Section 2.

1.1 Why ZKsync Era Data?
Launched in March 2023, ZKsync Era is a L2 scaling solution for the
Ethereum blockchain that utilizes Zero-Knowledge Proof (ZKP) for
efficient transaction processing. ZKsync Era is also an EVM-based
rollup, ensuring compatibility with existing Ethereum smart con-
tracts. As of July 2024, ZKsync Era ranks among the top five ZKP
chains with a Total Value Locked (TVL) estimated at 1.23 billion
USD [26]. This scaling solution improves Ethereum by process-
ing transactions in batches using ZKP, which helps maintain low
transaction fees and encourages user participation.

Currently, rollups are a key strategy to scale the Ethereum ecosys-
tem [15]. In fact, in the last few years, these L2 chains have become
an important part of the ecosystem by pushing new innovations
and absorbing a significant portion of user activity. At the same
time, there are still many unexplored questions when it comes to
these blockchains, and existing research is fairly limited.

Given the growing role of L2 chains in the Ethereum ecosystem,
we believe that there is an opportunity for researchers to conduct
research and expand our understanding of ZKsync. By making our
ZKsync Era data easily available to external groups, we hope to

1

Maria Inês Silva, Johnnatan Messias, and Benjamin Livshits

advance ZKsync-related research and knowledge about L2 chains,
more generally.

1.2 Contributions

▶ Public Availability of ZKsync Data. To facilitate scientific use
of our collected ZKsync Era dataset, we have made it available on a
public GitHub repository [4]. This consists of a one-year dataset
containing information regarding blocks, transactions, receipts, and
logs. Dataset details are presented in Section 2.
▶ Facilitating Research and Analysis. We demonstrated poten-
tial applications of this dataset in research and advocating for the
adoption of specific blockchain technologies like ZKsync and L2
rollups in Section 3.
▶ Practical Implications for Users and Researchers.We ad-
dress challenges associated with data gathering via RPCs and exter-
nal platforms like Etherscan [18], Arbiscan [10], and others, which
may be slow and costly. We provide an easy-to-download and easy-
to-load dataset of ZKsync Era, along with the Jupyter notebooks
code to facilitate this onboarding process. Table 1 describes our
code utilized to load and process our dataset. All the analyses con-
ducted in this paper can be easily reproduced using our code, which
is also available in our GitHub repository [4]. See Sections 2 and 3
for details.

1.3 Paper Organization
This paper is organized as follows. Section 2 details our dataset
and its data schema, together with the necessary background to
understand the context of blockchain data in general. Section 3 pro-
vides examples of analyses that can be achieved using this dataset
such as regarding transaction fees and gas usage, events derived
from transaction logs, token swaps, and more. Furthermore, Sec-
tion 4 discusses open problems and future directions for which this
dataset could be useful. Finally, we present the conclusion of our
work in Section 5.

2 Data Schema and Processing
In this section, we present our ZKsync dataset in detail. The dataset
covers the period of February 14th, 2023, (block number 1) and
March 24th, 2024, (block number 29,710,983) corresponding to 1 year
of data. It contains 327,174,035 transactions and 1,631,772 contracts
deployed during this time period which triggered 2,044,221,151
events on-chain. Transactions were issued by 7,322,502 unique
users. This dataset enables researchers or blockchain enthusiasts
to explore all the activities that occurred in the ZKsync Era since
its deployment. Table 2 summarizes our ZKsync Era dataset.

We gathered our dataset from our ZKsync Era archive node
as raw data. This data consists of all the information regarding
blocks, transactions, receipts, and logs. Then, to allow anyone to
use the dataset, we conducted a pre-processing step. This step
consists of formatting the data in a parquet format that can be
easily accessible through well-known libraries available in Python,
for example, Pandas [38] and Polars [42]. Due to the high volume
of data (i.e., around 200 GB), we focus on using Polars for better
processing, memory management, and Lazy evaluation [24, 41].
Next, we discuss each of the different data types separately.

Hash: 1F3B

Previous hash: 0000 Previous hash: 1F3B

Hash: A51A

Previous hash: A51A

Hash: 30B6

0 21

Figure 1: Illustration of blocks connected to each other forming
the blockchain.

2.1 Blocks
Blocks are sequential units of data within a blockchain, each identi-
fied by a unique hash. They contain a list of transactions, metadata
such as timestamps, and the hash of the previous block (paren-
tHash), which links them in a chain back to the genesis block (block
number 0) as shown in Figure 1. This chain of blocks forms the
blockchain. Blocks ensure transaction security, network consensus,
and efficient data storage and processing within blockchain net-
works. We list the attributes of the blocks presented in our dataset
in Table 3 in the Appendix. In our dataset, blocks should be sorted
according to the attribute block number to maintain the correct
order of the blocks on the blockchain.

2.2 Transactions
Transactions are digital interactions that involve the transfer of
assets, the recording of data, or the execution of smart contracts
between parties on blockchains like those based on EVM. Each
transaction is initiated by a user, authenticated through crypto-
graphic signatures, and sent to a decentralized network of nodes
for validation. Once verified, transactions are grouped into blocks
and added to the blockchain via a consensus mechanism, ensuring
that they are secure, immutable, transparent, and free of interme-
diaries, forming the core of the blockchain system. We list the
attributes of the transactions presented in our dataset in Table 4 in
the Appendix.

In rollups, such as ZKsync, transactions are aggregated and pro-
cessed off the underlying blockchain (e.g., Ethereum, a Layer-1
blockchain (L1)) to enhance scalability and reduce costs. Rollups
bundle multiple transactions into a single batch, which is then sub-
mitted to the underlying blockchain as one transaction. Thismethod
reduces the load on the underlying chain while ensuring transac-
tion security and finality through cryptographic proofs, such as
ZKP used by ZKsync or validity checks. By processing transactions
off-chain and periodically committing the results to the underlying
chain, rollups improve throughput and efficiency without compro-
mising the security and decentralization of the blockchain.

Transactions are identified by a unique transaction hash. When
issuing a transaction, the user needs to specify parameters such as
the recipient address (which can also be a smart contract and the
functions the user wants to call), the number of tokens to transfer,
the gas price, and the gas limit. The gas price represents the fee
the user is willing to pay per unit of gas, while the gas limit is the
maximum amount of gas the user is willing to consume for the
transaction, a mechanism introduced to prevent infinite loops or
excessive resource consumption.

2

A Public Dataset For the ZKsync Rollup

Notebook file Description

01-zksync-data.ipynb It computes the basic statistics of the dataset and provides analyses used in Section 2. We use four
main sources of data: blocks, transactions, transaction receipts, and logs.

02-data-exploration-fees.ipynb It provides the analyses regarding gas usage and transaction fees for ZKsync used in Section 3.1. We
use two main sources of data: blocks and transaction receipts.

03-data-exploration-contracts.ipynb It analyzes the contract deployment and events triggered on ZKsync described in Section 3.2. We use
one main source of data: transaction logs but also load blocks data to extract timestamps information.

04-data-exploration-swaps.ipynb It analyzes the swap events on ZKsync described in Section 3.3. We use one main source of data:
transaction logs but also load blocks data to extract timestamps information.

Table 1: Description of the code used for analysis in this paper. These notebook files are available on our GitHub repository [4]
in the directory ./zksync-data-dump/notebooks/ and provide examples of how to interact and process our ZKsync public dataset.

Chain Start date End date # of Blocks # of Transactions # of Issuers # of Contracts # of Logs

ZKsync Era February 14th, 2023 March 24th, 2024 29,710,983 327,174,035 7,322,502 1,631,772 2,044,221,151
Table 2: Description of our 1-year ZKsync dataset.

In our dataset, transactions should be sorted by the blockNumber
and transactionIndex attributes to maintain the correct order of the
transactions on the blockchain.

2.3 Transactions Receipts
Besides the raw transaction data described above, our dataset also
contains a table of transaction receipts.

Transaction receipts provide a comprehensive summary of the
outcome and effects of a transaction once it is processed and in-
cluded in a block. They include the transaction hash, block number,
and block hash to identify and verify the transaction, along with
the sender (from) and recipient (to) addresses.

The receipts also detail the cumulative gas used by the transac-
tion and all preceding transactions in the block, the actual gas used
by the specific transaction, and the final gas price paid by the user.
By multiplying the actual gas used by the gas price, we have the
actual transaction fee the user paid.

Additional information includes logs for event logging (discussed
next), the transaction status (success or failure), and the effective
gas price paid. These receipts are crucial for users and develop-
ers to understand, audit, and interact with transactions and smart
contracts on the blockchain. For example, they provide essential
elements for the analysis, monitoring, and verification of transac-
tion fees spent by users. We list the attributes of the transactions
presented in our dataset in Table 5 in the Appendix.

Similarly to transactions, in our dataset, transaction receipt data
should be sorted by attributes blockNumber and transactionIndex
to maintain the correct order of the transactions on the blockchain.

2.4 Transactions Logs
In this section, we discuss the attributes of the transaction logs data
in the ZKsync dataset in detail. Transaction logs are systematic
records of events generated during the execution of transactions,
particularly in interactions involving smart contracts. Each log
entry contains log index, data, and topics, crucial to identifying

and categorizing specific events such as token transfers, approvals,
swaps, minting, and voting.

These logs are emitted using the emit keyword within the smart
contract code and play a pivotal role inmonitoring activities, trigger-
ing actions within decentralized applications, and enabling event-
driven programming. For instance, Decentralized Exchanges (DEXs)
emit events upon trade executions, enabling user interfaces to up-
date displays with current trade information.

These logs are stored in transaction receipts, offering a gas-
efficient method to capture transient event data without perma-
nently altering the blockchain’s state. Among the vast array of
data accessible on EVM-based blockchains, transaction logs stand
out as crucial sources of information for researchers, developers,
and users. They facilitate analyses of various token transfer pat-
terns and support blockchain analysis research, the focus of our
contributions.

In our dataset, transaction logs should be sorted by the block-
Number, transactionIndex, and logIndex attributes to maintain the
correct order in which they are stored on the blockchain. This
is particularly important when analyzing the different states of
a blockchain before and after the execution of a transaction that
triggers a smart contract function.

2.4.1 Topics Attributes. The interpretation of the topics attributes
(topics0, topics1, topics2, and topics3) depends on the implementation
details of the invoked function within a smart contract. Typically,
topics0 represents the event name, while subsequent topics repre-
sent indexed parameters of the event. The “data” attribute contains
non-indexed event parameters. For example, in the context of a
token transfer event, topics0 might indicate the event name Transfer,
topics1 and topics2 could respectively denote sender and receiver
addresses, and data would typically represent the number of tokens
transferred.

2.4.2 Hashing and Signatures. topics0 corresponds to the hashed
function signature using keccak256 [12]. This signature con-
sists of the function name followed by its parameter types. For

3

https://github.com/matter-labs/zksync-data-dump/blob/main/notebooks/01-zksync-data.ipynb
https://github.com/matter-labs/zksync-data-dump/blob/main/notebooks/02-data-exploration-fees.ipynb
https://github.com/matter-labs/zksync-data-dump/blob/main/notebooks/03-data-exploration-contracts.ipynb
https://github.com/matter-labs/zksync-data-dump/blob/main/notebooks/04-data-exploration-swaps.ipynb

Maria Inês Silva, Johnnatan Messias, and Benjamin Livshits

example, the signature of a typical Transfer event is Trans-
fer(address,address,uint256). After hashing it with keccak256, the
result becomes 0xddf2 · · · b3ef, which is the topics0. Below is a
Python code snippet demonstrating how to verify if a given signa-
ture matches topics0:

1 import web3

2 def check_sig(sig , topics_0):

3 return web3.Web3.keccak(text=sig).hex() == topics_0

2.4.3 EventMapping. Weprovide amapping of themost frequently
invoked events within the ZKsync dataset in our GitHub reposi-
tory [4] under ./src/utils.py#events_dict. This mapping facilitates
the parsing of the majority of events in our dataset. The mapping
is structured as a dictionary where the topics0 hex value serves
as the key, and the corresponding value is a dictionary containing
the parsed event name and its function signature. For instance, the
Transfer event is represented as follows within the map:1

1 events_dict['0xddf252ad ... f523b3ef '] = {

2 'name': 'Transfer ',

3 'signature ': 'Transfer(address ,address ,uint256)'}

2.5 L2 to L1 Logs
L2 to L1 logs are messages emitted by the ZKsync L2 network and
transmitted to the Ethereum L1 network. They are essential for
maintaining communication between the two layers, ensuring the
security and integrity of transactions and data transfers. In ZKsync,
the L1 smart contract verifies these communications by checking
the messages alongside the ZKP. The only provable part of the
communication from L2 to L1 is the native L2 to L1 logs emitted by
the Virtual Machine (VM). These logs can be generated using the
to_l1 opcode [8]. We refer the reader to the ZKsync documentation
for more details [5]. We list the attributes of these logs in Table 7
in §A in the appendix.

3 Example Analyses
This section demonstrates some analyses that can be performed
using our ZKsync dataset. Each subsection concentrates on a spe-
cific topic and utilizes their respective data (e.g., blocks, transac-
tions, receipts, and logs). We consider all activity that starts with
block 561,367, the first block on April 1st, until block 29,710,983, the
last block in the ZKsync dataset.

This section should serve as a starting point for other researchers
wishing to use this dataset for their investigations. The code for
generating this analysis is discussed in Table 1 and can be accessed
on our GitHub repository [4].

3.1 Gas Usage and Transaction Fees
To start, we look into transactions, gas usage, and fees. All results
are generated from two main sources of data, namely blocks and
transaction receipts. Note that we are using the transaction receipts
instead of the transaction data because the receipts are the source
of the actual units of gas used and the final transaction fee paid by
users.

Figure 2 shows the daily transactions executed in ZKsync Era
over the period analyzed. The network processed an average of
1We shortened topics0 to 0xddf252ad · · · f523b3ef for better visualization in the paper.

905,194 transactions daily, with a significant spike in December 2023
that 5,362,921 transactions in a single day. This spike was due to a
boom in inscriptions, which became very popular for memecoin
traders around this time. Messias et al. [30] did a comprehensive
review of this phenomenon across various rollups. Since the spike
stabilized, we have seen a slight increase in daily transactions,
which are now hovering around 1.2 million transactions per day.

May 2023 Jul 2023 Sep 2023 Nov 2023 Jan 2024 Mar 2024

0

1M

2M

3M

4M

5M

Day

Da
ily

 tr
an

sa
ct

io
n

co
un

t
Figure 2: Total transactions executed per day.

Now, looking at gas usage, Figure 3 illustrates the total number
of gas units used each day in the ZKsync Era. On average, the
network has processed 567,111,979,658 gas units per day in the last
year. However, gas usage has been fairly volatile. Particularly, it
has experienced three significant spikes of more than 1.5 trillion
gas units per day, which we detail next.
May 2023. 30% of all gas used during the month of May 2023
can be attributed to the zkApes airdrop. The address receiving the
most gas units was the SyncSwap router contract, which is used to
execute swaps in the largest DEX in ZKsync Era. During this time,
we see more than 10% of all swaps trading ZAT, which does not
occur when we look at all swaps during the year under analysis.
The second address receiving the most gas units was the contract
used to claim the zkApes token (ZAT) in the context of the airdrop.
December 2023. This was caused by the inscriptions boom we
discussed before.
March 2024. The gas utilization during this spike is much more
distributed among transaction receivers, with the top receivers
being DEX routers, such as the SyncSwap V2 router and the Mute.io
router (which recently re-branded to Koi), and token contracts,
such as USDC.e and SOUL. This dispersed distribution of gas usage
coupled with the observed steady growth in both gas usage and
transaction count up to the spike suggests that it is due to the
increased trading activity on ZKsync Era.

We can further contextualize gas utilization by looking at Fig-
ure 4, which shows the average number of gas units used per trans-
action. We see that in May 2023, transactions were using on average
a significantly higher number of gas units (reaching 7,265,323 units
per transaction) compared to the average over the 1-year period
(784,149 units).

Finally, we can look at the transaction fees. Figure 5 shows the
average transaction fees over time. In other words, this is the cost
that users have paid, on average, to submit one unit of gas to ZKsync

4

https://github.com/matter-labs/zksync-data-dump/tree/main/notebooks

A Public Dataset For the ZKsync Rollup

May 2023 Jul 2023 Sep 2023 Nov 2023 Jan 2024 Mar 2024

0

0.5T

1T

1.5T

Day

To
ta

l u
ni

ts
 o

f g
as

 u
se

d
pe

r
da

y

Figure 3: Total gas units used per day.

May 2023 Jul 2023 Sep 2023 Nov 2023 Jan 2024 Mar 2024
0

1M

2M

3M

4M

5M

6M

7M

Day

Av
er

ag
e

un
its

 p
er

 tr
an

sa
ct

io
n

Figure 4: Average gas units used per transaction.

Era. Transaction fees were fairly stable during 2023, with an average
of 0.25 gwei per unit of gas.

However, in 2024, a key upgrade led to a significant decrease
in ZKsync transaction fees. Concretely, the implementation of the
new prover, Boojum [27], marked a significantly reduced hardware
requirement to run a Zero-Knowledge (ZK) prover and thus allowed
a reduction of transaction fees to 0.1 gwei per unit of gas.

Then, in March 2024, the Dencun upgrade was implemented
and deployed on the Ethereum mainnet. This upgrade, brought
in EIP-4844, introduced a new type of transaction that can store
“blobs” of data in the beacon node for 14 days [47]. Blobs have
their independent fee model and submitting data as blobs is much
cheaper than the previously used call-data [36]. ZKsync Era was
one of the first rollups using blobs to publish the data related to its
state changes, thus further reducing transaction fees to 0.025 gwei
per unit of gas.

3.2 Events and Contract Deployments
Events are an important source of additional data about activity on
EVM chains. They correspond to data emitted by smart contracts
and stored on-chain. In this subsection, we analyze this data and
report on some specific events. Recall that events can be obtained
from the logs data in the ZKsync dataset as discussed in Section 2.

Figure 6 shows the top 15 event types with the most emitted
events during the period under analysis. Different contracts may

May 2023 Jul 2023 Sep 2023 Nov 2023 Jan 2024 Mar 2024

0.05

0.1

0.15

0.2

0.25

Day

Av
er

ag
e

tr
an

sa
ct

io
n

fe
e

pe
r

da
y

(g
w

ei
)

Figure 5: Average transaction fee in gwei per unit of gas by
day.

emit the same event type, so what distinguishes them is the event’s
function signature, and thus its respective hash.

There is a significant overrepresentation of the top 4 event types,
with Transfer events being by far the largest type (70.9% of all events
are Transfer events). This is not unexpected as this event is emitted
every time an ERC-20 token is transferred between two addresses.
This occurs in both simple token transfers, but also as part of other
common contract operations such as swaps in DEXs.

72.86%

6.00%

4.94%

3.83%

1.00%

0.83%

0.57%

0.43%

0.37%

0.37%

0.30%

0.28%

0.18%

0.18%

0.16%

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Transfer
Approval

Swap
Sync
Mint

Message
Fees

MintSoul
DistributedSupplierComp

AssignJob
Redeem

AccrueInterest
RelayerParams

Packet
Burn

Percentage over all events

To
p-

15
 e

ve
nt

Figure 6: Top 15 event types with the highest number of
events emitted between April 1st, 2023 and March 24th, 2024,
and their percentage over all events emitted. Percentages
include ETH transfers generated from transaction fee pay-
ments.

Before looking at Transfer events in more detail, we should high-
light a particularity in how ZKsync Era implements transaction fee
collection. In this chain, every transaction generates two additional
ETH transfers — one for the initial payment of the transaction fees
from the transaction submitter and another with a transaction fee
refund (after all L1 and proving costs are accounted for). These
transaction fee transfers always appear as ETH transfers from or
to the address 0x80012 and thus generate Transfer events.

These specific events account for 38.2% of all events emitted and,
if we exclude them entirely from the event dataset, Transfer events
only account for 56.1% of these filtered events.
2We shortened this address for better visualization in the paper.

5

https://era.zksync.network/address/0x0000000000000000000000000000000000008001

Maria Inês Silva, Johnnatan Messias, and Benjamin Livshits

After filtering the Transfer events generated by fee management
ETH transfers, we can explore the top tokens transferred by exam-
ining the contract address that emitted the event. Figure 7 displays
the 15 tokens most frequently transferred during the period.

Native ETH, Wrapped ETH, and Bridged USDC (USDC.e) are the
most transfers, accounting collectively for 78.4%. We can also see
some other stablecoins such as Tether USD or Binance USD, and
Liquidity Provider (LP) tokens associated with DEXs on ZKsync
Era, such as SyncSwap, and SpaceSwap.

40.66%

20.41%

17.17%

2.51%

1.25%

1.20%

1.00%

0.53%

0.49%

0.39%

0.37%

0.36%

0.33%

0.33%

0.31%

0 0.1 0.2 0.3 0.4

Ether
Wrapped Ether

USD Coin
Tether USD

Soul
SyncSwap USDC/WETH Classic LP

Binance USD
EraLend Ether
Wrapped BTC

ReactorFusion
Holdstation

USD+
SpaceSwap LP Token

Maverick Token
Mute.io

Percentage over all transfers

To
p-

15
 to

ke
ns

 tr
an

sf
er

re
d

Figure 7: Top 15 ERC-20 tokens with the highest number
of Transfer events emitted between April 1st, 2023 and
March 24th, 2024, and their percentage over all Transfer
events emitted. Percentages exclude ETH transfers gener-
ated from transaction fee payments.

Approvals are the second-largest event type, with 6% of events
emitted. Similarly to the Transfer events, we can seewhich contracts
are emitting these events. Figure 8 shows these top 15 emitters.

The top emitters are also ERC-20 token contracts, and these
events represent an owner “approving” a spender to transfer a
predefined amount of tokens they hold. This is common in bridged
assets, for example, as is the case of Bridged USDC (USDC.e) and
Wrapped ETH, the top 2 emitters.

56.49%

6.28%

5.98%

3.32%

2.36%

1.67%

1.44%

1.34%

1.28%

0.99%

0.91%

0.87%

0.83%

0.76%

0.63%

0 0.1 0.2 0.3 0.4 0.5

USD Coin
Wrapped Ether

Tether USD
Binance USD

Holdstation
zkSwap Finance

USD+
Wrapped BTC

Maverick Token
SyncSwap USDC/WETH Classic LP

Mute.io
zkApes token

SPACE
izumi Token

zkUSD Dollar

Percentage over all approvals

To
p-

15
 A

pp
ro

va
l e

m
itt

er
s

Figure 8: Top 15 contracts with the highest number of
Approval events emitted between April 1st, 2023 and
March 24th, 2024, and their percentage over all Approval
events emitted.

Swaps and Syncs are the third and fourthmost frequently emitted
event types, accounting for 4.9% and 3.8% of all events emitted,

respectively. These events are a key source of data for analyzing
DEXs. However, we will leave a more in-depth exploration of these
in the next subsection.

Finally, we examine contract deployments. Every time a contract
is deployed, a specific event type is emitted, which allows us to
easily track this metric. Although this event type is not among
the 15 most emitted event types, it is still an important metric
for network activity. In ZKsync, the contract deployment event is
named ContractDeployed.

Figure 9 shows the number of contracts deployed on ZKsync
each day. Before September 2023, developers averaged 2510 contract
deployments per day. However, there were two major spikes during
this time, the first reaching 29,114 and the second reaching 17,602
contract deployments in a single day. Then, after September 2023,
contract deployments increased to a daily average of 6672.

May 2023 Jul 2023 Sep 2023 Nov 2023 Jan 2024 Mar 2024

0

5k

10k

15k

20k

25k

30k

Day

N
um

be
r

of
 c

on
tr

ac
ts

 d
ep

lo
ye

d
pe

r
da

y

Figure 9: Total number of contracts deployed on ZKsync Era
per day.

3.3 Swaps
After a high-level look at these events, we now focus on a specific
event that is relevant to understanding activity on DEXs — the
Swap event. Recall that swap events account for 4.9% of all events
emitted on ZKsync.

Swap events are emitted every time a successful swap is per-
formed in a DEX. These events contain information about the con-
tract that emits the event, the amounts of each token being traded,
and the wallets involved in the trade.

Figure 10 shows the number of swap events emitted each day
during the analyzed period, which is equivalent to the number of
swaps performed each day on ZKsync DEXs. We have a long-term
trend of increasing the number of daily swaps, with a peak around
March 2024 (which reached 531,819 swaps in a single day). During
this year, users performed an average of 192,009 swaps per day.

We also see which LP contract was involved in the swap by look-
ing at the contract address that emitted the event. Depending on the
DEXs protocol, this may be the actual liquidity pool involved in the
swap (e.g., SyncSwap and Koi) or a generic LP contract managing
all the pools in the DEX (e.g., SpaceSwap and PancakeSwap). To
understand which tokens were being traded in these generic LP
contracts, we would have to process the transfer events emitted in
the same transaction of these Swap events.

6

A Public Dataset For the ZKsync Rollup

May 2023 Jul 2023 Sep 2023 Nov 2023 Jan 2024 Mar 2024

0

100k

200k

300k

400k

500k

Day

N
um

be
r

of
 s

w
ap

s
ex

ec
ut

ed
 p

er
 d

ay

Figure 10: Number of swap events emitted per day. This cor-
responds to the number of swaps performed each day.

Figure 11 shows the top 15 contracts that emitted the most swaps
even during the period under analysis. The largest emitter is, by
a significant margin, the USDC/WETH pool on SyncSwap, which
accounts for almost a third of all emitted Swap events. All combined
swap events from SpaceSwap represent 11% of all swaps, followed
by two USDC/WETH pools from other DEX.

32.14%

11.26%

6.31%

4.85%

4.36%

3.66%

3.32%

3.23%

1.41%

1.19%

1.16%

1.07%

1.01%

0.99%

0.99%

0 0.05 0.1 0.15 0.2 0.25 0.3

SyncSwap USDC/WETH Classic LP
SpaceSwap LP Token

Volatile Mute LP (USDC/WETH)
VolatileV1 AMM - USDC/WETH

SyncSwap USDT/WETH Classic LP
ZF USDC/WETH LP Token

Stable Mute LP (USDC/WETH)
SyncSwap USDC/USDT Stable LP

Stable Mute LP (USDC/USDT)
ZF ZF/WETH LP Token

eZKalibur LP
SyncSwap USDC/USD+ Stable LP
SyncSwap BUSD/USDC Stable LP

Pancake LPs
SyncSwap WETH/WBTC Classic LP

Percentage over all swap events

To
p-

15
 s

w
ap

 e
m

itt
er

s

Figure 11: Top 15 contracts emitting the most Swap events
between April 1st, 2023 and March 24th, 2024, and their per-
centage over all Swap events emitted.

Finally, we can use the “receivers” field to analyze swappers. In
other words, this field provides the wallet address that is receiving
the swapped token. Figure 12 displays the distribution of swaps
made by unique wallet addresses.

We note that most of the users performed less than 50 swaps
during the period under analysis. Concretely, the percentile 95% of
this distribution is 42 swap events. However, the distribution has
a significant skew to the right, with a few addresses generating a
large number of swaps in the year examined. These large “traders”
are usually routers and other protocols that interact with DEXs;
thus, they represent many end-users. Examples include the top
swappers, which are the Mute.io router, the SpaceFi router, and the
Odos V2 router, respectively.

1 10 100 1000 10k 100k 1M

Total number of swaps made - box plot & average

Figure 12: Distribution of swaps per unique wallet addresses.

4 Future Directions
Among the data analysis presented in this paper, our ZKsync dataset
can be applied to different studies. We list some of them below,
where this dataset can be valuable.
MEV and Arbitrage. MEV and arbitrage have been extensively
studied in L1 blockchains [31, 43–45, 48]. However, only recently
have new studies shifted their focus to L2s [11, 20, 21, 46], including
ZKsync Era. Our dataset can contribute to this type of research
by enabling further analysis of MEV on ZKsync Era. For exam-
ple, one type of MEV known as backrunning involves arbitrageurs
ensuring their transactions are included immediately after a tar-
get transaction. This can be particularly useful in scenarios like
liquidation-MEV, where arbitrageurs take advantage of opportuni-
ties that arise right after an oracle update [31, 43, 48]. Another form
of arbitrage worth analyzing is CEX-DEX MEV, where arbitrageurs
exploit price deviations between Centralized Exchange (CEX) and
DEX platforms. Additionally, studying cross-rollup MEV could pro-
vide insights into opportunities where arbitrageurs benefit from
differences across two or more rollups.
Analysis of user activity on chain. Analyzing user activity
in the ZKsync chain provides valuable insights into user behavior.
This includes examining the transactions issued by users and their
interactions with smart contracts. Such an analysis can also help
identify airdrop farmers who create multiple accounts, known as
Sybils, although this task can be challenging [33]. Another impor-
tant area of analysis is measuring the impact of users in social
media networks driving activities on the blockchain. For example,
examining the recent boom in inscriptions in L2s chains can re-
veal how social networks can influence blockchain activity [30, 35].
Additionally, since our dataset includes all event logs, it allows for
the analysis of decentralized governance of protocols deployed on
ZKsync. This involves studying proposals to amend smart contracts
and their voting processes. By filtering data related to governance
contracts, such as how each user voted and the distribution of these
governance tokens among users, it can shed light on the implica-
tions of token concentration on decentralized governance, raising
concerns about fairness [32].
Data Science Analytics. This dataset can also be valuable for
users or non-researchers interested in exploring blockchain data. It
offers an opportunity for those who wish to gain a deeper under-
standing of blockchains. For example, data scientists can utilize this
dataset to explore and analyze blockchain data on public platforms
such as Kaggle [25]. Data scientists widely use it to demonstrate
their skills in data analytics, machine learning, and data science in
general. Therefore, this dataset can help data scientists acquire new

7

Maria Inês Silva, Johnnatan Messias, and Benjamin Livshits

skills, giving them a competitive edge in the market or improving
their prospects of securing a job in a blockchain company.

We hope that this dataset proves to be a valuable resource for
research groups interested in conducting studies on L2s blockchains
and ZKsync Era. To facilitate this, we have made the dataset avail-
able in a GitHub repository [4].

5 Conclusion
At a high level, this paper addresses a critical concern within the
scientific community: the availability and accessibility of blockchain
data. Data-driven research is dependent on high-quality datasets
to make meaningful findings. Although blockchain data are theo-
retically publicly available, practical challenges often prevent re-
searchers, especially those without technical expertise, from ob-
taining them. In addition, the cost of using external services or
deploying infrastructure to run archive nodes can be prohibitive.

To address these challenges, we have collected, pre-processed,
and made available our ZKsync dataset to facilitate access for re-
searchers. We also provide a detailed background on blockchains,
including blocks, transactions, receipts, and logs, designed to help
nonexperts understand and utilize the data effectively. To illustrate
the potential of this dataset, we offer example analyses and discuss
future research directions.

We believe that our contribution will be valuable to researchers
studying blockchain L2 ecosystems, particularly those interested on
ZKsync. This dataset also adds to the existing body of L2 research
and is designed for ease of use, using the Python library Polars to
allow straightforward data processing on a local laptop.

Finally, to promote scientific reproducibility and to support fur-
ther research, we have made our dataset publicly available on
GitHub [4].

References
[1] 2017. EIP-712: Typed structured data hashing and signing. https://eips.ethereum.

org/EIPS/eip-712.
[2] 2019. EIP-1559: Fee market change for ETH 1.0 chain. https://eips.ethereum.org/

EIPS/eip-1559.
[3] 2020. EIP-2930: Optional access lists. https://eips.ethereum.org/EIPS/eip-2930.
[4] 2024. Data sets and scripts used to analyze the ZKsync Era blockchain. https:

//github.com/matter-labs/zksync-data-dump.
[5] 2024. L1 <-> L2 Communication. https://docs.zksync.io/zk-stack/concepts/

l1_l2_communication.
[6] 2024. NANSEN Query: Empowering Crypto Teams With In-Depth Blockchain

Data. https://www.nansen.ai/query.
[7] 2024. Reth Book. https://reth.rs.
[8] 2024. System contracts/bootloader description (VM v1.4.0). https://github.

com/code-423n4/2023-10-zksync/blob/main/docs/SmartcontractSection/
Systemcontractsbootloaderdescription.md.

[9] 2024. Transaction Lifecycle. https://docs.zksync.io/zk-stack/concepts/
transaction-lifecycle#transaction-types.

[10] Arbitrum. 2024. Arbitrum (ETH) Blockchain Explorer. https://arbiscan.io. Ac-
cessed on June 5, 2024.

[11] Arthur Bagourd and Luca Georges Francois. 2023. Quantifying MEV On Layer 2
Networks. arXiv preprint arXiv:2309.00629 (2023).

[12] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. 2009.
Keccak sponge function family main document. Submission to NIST (Round 2)
(2009).

[13] bitcoin.org. 2024. Bitcoin Core. https://bitcoin.org/en/bitcoin-core.
[14] bnbchain.org. 2024. BNB Smart Chain. https://www.bnbchain.org/en/bnb-smart-

chain.
[15] Vitalik Buterin. 2020. A rollup-centric ethereum roadmap. https://ethereum-

magicians.org/t/a-rollup-centric-ethereum-roadmap/4698
[16] Alen Day and Evgeny Medvedev. 2019. Introducing six new cryp-

tocurrencies in BigQuery Public Datasets—and how to analyze them.

https://cloud.google.com/blog/products/data-analytics/introducing-six-new-
cryptocurrencies-in-bigquery-public-datasets-and-how-to-analyze-them

[17] Dune Analytics. 2024. Dune – Crypto Analytics Powered by Community. https:
//dune.com/home. Accessed on June 5, 2024.

[18] Etherscan. 2024. Etherscan (ETH) Blockchain Explorer. https://etherscan.io.
Accessed on June 5, 2024.

[19] Krzysztof Gogol, Robin Fritsch, Johnnatan Messias, Malte Schlosser, Benjamin
Kraner, and Claudio Tessone. 2024. Liquid Staking Tokens in Automated Market
Makers. (2024).

[20] Krzysztof Gogol, Johnnatan Messias, Deborah Miori, Claudio Tessone, and Ben-
jamin Livshits. 2024. Layer-2 Arbitrage: An Empirical Analysis of SwapDynamics
and Price Disparities on Rollups. arXiv preprint arXiv:2406.02172 (2024).

[21] Krzysztof Gogol, Johnnatan Messias, Deborah Miori, Claudio Tessone, and Ben-
jamin Livshits. 2024. Quantifying Arbitrage in Automated Market Makers: An
Empirical Study of Ethereum ZK Rollups. arXiv preprint arXiv:2403.16083 (2024).

[22] Krzysztof Gogol, Johnnatan Messias, Malte Schlosser, Benjamin Kraner, and Clau-
dio Tessone. 2023. Cross-border Exchange of CBDCs using Layer-2 Blockchain.
arXiv preprint arXiv:2312.16193 (2023).

[23] Krzysztof Gogol, Johnnatan Messias, Maria Ines Silva, and Benjamin Livshits.
2024. The Writing is on the Wall: Analyzing the Boom of Inscriptions and its Im-
pact on Rollup Performance and Cost Efficiency. arXiv preprint arXiv:2404.11189
(2024).

[24] Thomas Johnsson. 1984. Efficient compilation of lazy evaluation. In Proceedings
of the 1984 SIGPLAN symposium on Compiler construction.

[25] Kaggle. 2024. Kaggle: Your Machine Learning and Data Science Community.
https://www.kaggle.com.

[26] L2Beat. 2024. L2Beat: The state of the layer two ecosystem. https://l2beat.com/
scaling/summary?sort-by=total&sort-order=desc#layer2s.

[27] Matter Labs. 2024. Boojum Upgrade: zkSync Era’s New High-performance
Proof System for Radical Decentralization. https://zksync.mirror.xyz/
HJ2Pj45EJkRdt5Pau-ZXwkV2ctPx8qFL19STM5jdYhc.

[28] Johnnatan Messias, Mohamed Alzayat, Balakrishnan Chandrasekaran, Krishna P.
Gummadi, Patrick Loiseau, and Alan Mislove. 2021. Data sets and scripts used for
analyzing “norm” violations in Bitcoin. https://github.com/johnnatan-messias/
blockchain-transaction-ordering.

[29] Johnnatan Messias, Mohamed Alzayat, Balakrishnan Chandrasekaran, Krishna P.
Gummadi, Patrick Loiseau, and AlanMislove. 2021. Selfish &Opaque Transaction
Ordering in the Bitcoin Blockchain: The Case for Chain Neutrality. In Proceedings
of the 21st ACM Internet Measurement Conference (IMC ’21).

[30] Johnnatan Messias, Krzysztof Gogol, Maria Inês Silva, and Benjamin Livshits.
2024. The Writing is on the Wall: Analyzing the Boom of Inscriptions and its
Impact on EVM-compatible Blockchains. arXiv preprint arXiv:2405.15288 (2024).

[31] Johnnatan Messias, Vabuk Pahari, Balakrishnan Chandrasekaran, Krishna P.
Gummadi, and Patrick Loiseau. 2023. Dissecting Bitcoin and Ethereum Transac-
tions: On the Lack of Transaction Contention and Prioritization Transparency
in Blockchains. In Proceedings of the Financial Cryptography and Data Security
(FC’23).

[32] Johnnatan Messias, Vabuk Pahari, Balakrishnan Chandrasekaran, Krishna P.
Gummadi, and Patrick Loiseau. 2024. Understanding Blockchain Gover-
nance: Analyzing Decentralized Voting to Amend DeFi Smart Contracts.
arXiv:2305.17655 [cs.CR] https://arxiv.org/abs/2305.17655

[33] Johnnatan Messias, Aviv Yaish, and Benjamin Livshits. 2023. Airdrops: Giving
money away is harder than it seems. arXiv preprint arXiv:2312.02752 (2023).

[34] Offchain Labs. 2024. A gentle introduction to Arbitrum. https://docs.arbitrum.
io/intro.

[35] Janna Joceli Omena, Johnnatan Messias, Fabio Gouveia, and Riccardo Ventura.
2024. Digital Methods for Blockchain Research. https://www.researchgate.net/
publication/382511569_Digital_Methods_for_Blockchain_Research.

[36] Omkar Godbole. 2024. Layer 2 Blockchains Become Cheaper After Ethereum’s
Dencun Upgrade. https://www.coindesk.com/markets/2024/03/14/layer-2-
blockchains-become-cheaper-after-ethereums-dencun-upgrade.

[37] Optimism Foundation. 2024. Optimism. https://www.optimism.io.
[38] Pandas. 2024. Pandas: Python data analysis library. https://pandas.pydata.org.
[39] Paradigm. 2024. Paradigm Data Portal. https://www.paradigm.xyz/oss/portal.
[40] Paradigm. 2024. Paradigm Data Portal. https://github.com/paradigmxyz/

paradigm-data-portal.
[41] Polars. 2024. Lazy / Eager API: Polars user guide. https://docs.pola.rs/user-

guide/concepts/lazy-vs-eager.
[42] Polars. 2024. Polars: Dataframes for the new era. https://pola.rs.
[43] Kaihua Qin, Liyi Zhou, and Arthur Gervais. 2022. Quantifying blockchain

extractable value: How dark is the forest?. In 2022 IEEE Symposium on Security
and Privacy (SP).

[44] Kaihua Qin, Liyi Zhou, Benjamin Livshits, and Arthur Gervais. 2021. Attacking
the defi ecosystem with flash loans for fun and profit. In International conference
on financial cryptography and data security.

[45] Christof Ferreira Torres, Ramiro Camino, et al. 2021. Frontrunner jones and the
raiders of the dark forest: An empirical study of frontrunning on the ethereum
blockchain. In 30th USENIX Security Symposium (USENIX Security 21).

8

https://eips.ethereum.org/EIPS/eip-712
https://eips.ethereum.org/EIPS/eip-712
https://eips.ethereum.org/EIPS/eip-1559
https://eips.ethereum.org/EIPS/eip-1559
https://eips.ethereum.org/EIPS/eip-2930
https://github.com/matter-labs/zksync-data-dump
https://github.com/matter-labs/zksync-data-dump
https://docs.zksync.io/zk-stack/concepts/l1_l2_communication
https://docs.zksync.io/zk-stack/concepts/l1_l2_communication
https://www.nansen.ai/query
https://reth.rs
https://github.com/code-423n4/2023-10-zksync/blob/main/docs/Smart contract Section/System contracts bootloader description.md
https://github.com/code-423n4/2023-10-zksync/blob/main/docs/Smart contract Section/System contracts bootloader description.md
https://github.com/code-423n4/2023-10-zksync/blob/main/docs/Smart contract Section/System contracts bootloader description.md
https://docs.zksync.io/zk-stack/concepts/transaction-lifecycle#transaction-types
https://docs.zksync.io/zk-stack/concepts/transaction-lifecycle#transaction-types
https://arbiscan.io
https://bitcoin.org/en/bitcoin-core
https://www.bnbchain.org/en/bnb-smart-chain
https://www.bnbchain.org/en/bnb-smart-chain
https://ethereum-magicians.org/t/a-rollup-centric-ethereum-roadmap/4698
https://ethereum-magicians.org/t/a-rollup-centric-ethereum-roadmap/4698
https://cloud.google.com/blog/products/data-analytics/introducing-six-new-cryptocurrencies-in-bigquery-public-datasets-and-how-to-analyze-them
https://cloud.google.com/blog/products/data-analytics/introducing-six-new-cryptocurrencies-in-bigquery-public-datasets-and-how-to-analyze-them
https://dune.com/home
https://dune.com/home
https://etherscan.io
https://www.kaggle.com
https://l2beat.com/scaling/summary?sort-by=total&sort-order=desc#layer2s
https://l2beat.com/scaling/summary?sort-by=total&sort-order=desc#layer2s
https://zksync.mirror.xyz/HJ2Pj45EJkRdt5Pau-ZXwkV2ctPx8qFL19STM5jdYhc
https://zksync.mirror.xyz/HJ2Pj45EJkRdt5Pau-ZXwkV2ctPx8qFL19STM5jdYhc
https://github.com/johnnatan-messias/blockchain-transaction-ordering
https://github.com/johnnatan-messias/blockchain-transaction-ordering
https://arxiv.org/abs/2305.17655
https://arxiv.org/abs/2305.17655
https://docs.arbitrum.io/intro
https://docs.arbitrum.io/intro
https://www.researchgate.net/publication/382511569_Digital_Methods_for_Blockchain_Research
https://www.researchgate.net/publication/382511569_Digital_Methods_for_Blockchain_Research
https://www.coindesk.com/markets/2024/03/14/layer-2-blockchains-become-cheaper-after-ethereums-dencun-upgrade
https://www.coindesk.com/markets/2024/03/14/layer-2-blockchains-become-cheaper-after-ethereums-dencun-upgrade
https://www.optimism.io
https://pandas.pydata.org
https://www.paradigm.xyz/oss/portal
https://github.com/paradigmxyz/paradigm-data-portal
https://github.com/paradigmxyz/paradigm-data-portal
https://docs.pola.rs/user-guide/concepts/lazy-vs-eager
https://docs.pola.rs/user-guide/concepts/lazy-vs-eager
https://pola.rs

A Public Dataset For the ZKsync Rollup

[46] Christof Ferreira Torres, Albin Mamuti, Ben Weintraub, Cristina Nita-Rotaru,
and Shweta Shinde. 2024. Rolling in the Shadows: Analyzing the Extraction of
MEV Across Layer-2 Rollups. arXiv preprint arXiv:2405.00138 (2024).

[47] Vitalik Buterin and Dankrad Feist and Diederik Loerakker and George Kadianakis
and Matt Garnett and Mofi Taiwo and Ansgar Dietrichs. 2022. EIP-4844: Shard
Blob Transactions. https://github.com/ethereum/EIPs/blob/master/EIPS/eip-
4844.md.

[48] Ben Weintraub, Christof Ferreira Torres, Cristina Nita-Rotaru, and Radu State.
2022. A flash (bot) in the pan: measuring maximal extractable value in private
pools. In Proceedings of the 22nd ACM Internet Measurement Conference.

[49] ZettaBlock Inc. 2024. Full Stack Data Platform To Build Web3 Apps in Minutes.
https://zettablock.com. Accessed on June 5, 2024.

A Additional Information for Data Schemas
In this section, we present the attributes available in our dataset,
including their data types and brief descriptions. Our dataset con-
sists of one year of ZKsync data, containing all blocks, transactions,
receipts, and logs included in the ZKsync blockchain.

Table 3 describes the attributes of each block added to the ZKsync
blockchain. Table 4 details the transaction data, including their data
types and descriptions. Table 5 provides information on transaction
receipts, which are generated immediately after a transaction is
executed and added to a block. This is useful for computing the
actual gas spent on a transaction and the corresponding transaction
fees paid by users.

Next, Table 6 contains information about transaction logs, which
is crucial for analyzing changes in smart contract states such as

account balances, token transfers, votes cast, and swaps. Finally,
Table 7 presents the attributes related to the messages emitted by
ZKsync to the Ethereum mainnet.

B Glossary
Following is a list of important notations used in this paper.

Acronyms

AMM Automated Market Maker
CEX Centralized Exchange
DEX Decentralized Exchange
EVM Ethereum Virtual Machine
L1 Layer-1 blockchain
L2 Layer-2 blockchain
LP Liquidity Provider
MEV Maximal-Extractable Value
RPC Remote Procedure Call
TVL Total Value Locked
VM Virtual Machine
ZK Zero-Knowledge
ZKP Zero-Knowledge Proof

9

https://github.com/ethereum/EIPs/blob/master/EIPS/eip-4844.md
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-4844.md
https://zettablock.com

Maria Inês Silva, Johnnatan Messias, and Benjamin Livshits

Attribute Type Description

hash str Unique identifier for the block.
parentHash str Unique identifier of the parent block.
sha3Uncles str SHA-3 hash of the uncles’ block headers. On ZKsync it is set to 0x1dcc · · · 9347

since there are no uncle blocks.
miner str Address of the miner who mined the block. This is set as Null address (0x0) in

all ZKsync blocks since it does not have miners or block validators.
stateRoot str Root hash of the state trie. Set to Null address (0x0).

transactionsRoot str Root hash of the transaction trie. Set to Null address (0x0).
receiptsRoot str Root hash of the receipts trie. Set to Null address (0x0).

number i64 Block number or height.
l1BatchNumber str L1 batch number, related to the sequence of batches submitted to Layer 1 on

zkRollup systems.
gasUsed i64 Total amount of gas used by all transactions in the block.
gasLimit i64 Maximum amount of gas that can be used by all transactions in the block. Set to

4,294,967,296 (232) units of gas.
baseFeePerGas i64 Base fee, in Wei (10−18𝐸𝑇𝐻), per unit of gas.

extraData str Extra data included by the miner in the block. Set to 0x since there are no miners.
logsBloom str Bloom filter for the logs of the block. Set to 0x0 · · · 0.
timestamp i64 Unix timestamp of when the block was collated.

l1BatchTimestamp str L1 batch timestamp (in HEX format) associated with the block.
difficulty i64 Difficulty target for mining the block. Set to 0 since there is no mining.

totalDifficulty i64 Cumulative difficulty of the blockchain up to and including this block. Set to 0
since there is no mining.

sealFields list[null] Seal fields containing proof-of-work or proof-of-stake information. List contain-
ing null as value.

uncles list[null] Uncle blocks that were mined but not included in the main chain. List with Null
value since there is no mining.

size i64 Size of the block in bytes. Set to 0.
mixHash str Hash used in the mining process to prove that enough computational work has

been performed. Set to 0x0 · · · 0 since there is no mining.
nonce str Value used in the mining process to find a valid block hash. Set to 0x0 · · · 0

since there is no mining.

Table 3: Description of block attributes on ZKsync.

10

A Public Dataset For the ZKsync Rollup

Attribute Type Description

blockHash str Unique identifier of the block containing the transaction.
blockNumber i64 Block number or height containing the transaction.

chainId i64 Identifier of the blockchain network. Set to 324 that represents ZKsync chain.
from str Address of the sender of the transaction.
gas i64 Amount of gas provided as gasLimit for the transaction.

gasPrice i64 Price per unit of gas the sender is willing to pay.
hash str Unique identifier for the transaction.
input str Data sent along with the transaction. In HEX code.

l1BatchNumber str L1 batch number related to the transaction in zkRollup systems.
l1BatchTxIndex str Index of the transaction in the L1 batch.
maxFeePerGas i64 Maximum fee, in Wei (10−18 ETH), per unit of gas.

maxPriorityFeePerGas i64 Maximum priority fee, in Wei (10−18 ETH), per unit of gas.
nonce i64 Number of transactions sent by the sender prior to this one.

r str First part of the ECDSA signature.
s str Second part of the ECDSA signature.
to str Address of the receiver of the transaction.

transactionIndex i64 Index of the transaction within the block.
type i64 Type of transaction divided into 5 categories: Legacy (0 or 0x0), EIP-2930 (1 or

0x1) [3], EIP-1559 (2 or 0x2) [2], EIP-712 (113 or 0x71) [1], and Priority (255 or
0xff). See details in ZKsync documentation [9].

v f64 Recovery id of the ECDSA signature.
value str Amount of tokens (in Wei and in HEX format) that are transferred in the trans-

action to the recipient address (to).

Table 4: Description of transaction attributes on ZKsync.

Attribute Type Description

blockHash str Unique identifier of the block containing the transaction.
blockNumber i64 Block number or height containing the transaction.

contractAddress str Address of the contract created by the transaction, if applicable.
cumulativeGasUsed i64 Total amount of gas used when the transaction was executed in the block. Set to

0 on ZKsync.
effectiveGasPrice i64 Actual price per unit of gas, in Wei (10−18 ETH), paid.

from str Address of the sender of the transaction.
gasUsed i64 Amount of gas used by the transaction.

l1BatchNumber str L1 batch number related to the transaction in zkRollup systems.
l1BatchTxIndex str Index of the transaction in the L1 batch.

logsBloom str Bloom filter for the logs of the transaction. Set to 0x0 · · · 0 on ZKsync.
root str State root after the transaction is executed.

status i64 Status of the transaction (1 for success, 0 for failure).
to str Address of the receiver of the transaction.

transactionHash str Unique identifier for the transaction.
transactionIndex i64 Index of the transaction within the block.

type i64 Type of transaction divided into 5 categories. Refer to Table 4 and to ZKsync
documentation [9] for details.

Table 5: Description of transaction receipt attributes on ZKsync.

11

Maria Inês Silva, Johnnatan Messias, and Benjamin Livshits

Attribute Type Description

address str Address of the contract that generated the log.
blockHash str Unique identifier of the block containing the transaction.

blockNumber i64 Block number or height containing the transaction.
data str Data contained in the log. This can be used, for example, to extract the amount

of tokens transferred from one user to another.
l1BatchNumber str L1 batch number related to the log in zkRollup systems.

logIndex i64 Index of the log within the block.
logType null Type of log. Set to null on ZKsync.
removed bool Indicates whether the log was removed (true) or not (false).

transactionHash str Unique identifier for the transaction.
transactionIndex i64 Index of the transaction within the block.

transactionLogIndex str Index of the log within the transaction. In HEX format.
topics0 str First topic of the log. This is typically referred to as the name of the event

encoded in hexadecimal (HEX) format.
topics1 str Second topic of the log.
topics2 str Third topic of the log.
topics3 str Fourth topic of the log.

Table 6: Description of transaction log attributes on ZKsync.

Attribute Type Description

blockHash str Unique identifier of the block containing the log.
blockNumber str Block number or height containing the log.
isService bool Indicates whether the log is a service log (true) or not (false).
key str Key associated with the log that could be used to carry some data with the log.
l1BatchNumber str L1 batch number related to the log in zkRollup systems.
logIndex str Index of the log within the block.
sender str It is the value of this in the frame where the L2→L1 log was emitted.
shardId str It is the id of the shard the opcode was called. It is currently set to 0.
transactionHash str Unique identifier for the transaction associated with the log.
transactionIndex str Index of the transaction within the block.
transactionLogIndex str Index of the log within the transaction.
txIndexInL1Batch str Index of the transaction within the L1 batch.
value str Value associated with the log that could be used to carry some data with the log.

Table 7: Description of L2 to L1 log attributes on ZKsync.

12

	Abstract
	1 Introduction
	1.1 Why ZKsync Era Data?
	1.2 Contributions
	1.3 Paper Organization

	2 Data Schema and Processing
	2.1 Blocks
	2.2 Transactions
	2.3 Transactions Receipts
	2.4 Transactions Logs
	2.5 L2 to L1 Logs

	3 Example Analyses
	3.1 Gas Usage and Transaction Fees
	3.2 Events and Contract Deployments
	3.3 Swaps

	4 Future Directions
	5 Conclusion
	References
	A Additional Information for Data Schemas
	B Glossary
	Acronyms

