Characterizing Interconnections and Linguistic Patterns in Twitter

JOHNNATAN MESSIAS
ADVISOR: FABRÍCIO BENEVENUTO

Contents

DIntroduction

- Motivation
-Goals
-Contributions
\square Related Works
\square Demographic Information
Dataset
\square Inequality in Visibility
\square Linguistic Patterns
\square Demographic Group Interconnections
\square Leverage Demographic Aspects to Design Transparent Systems
\square Conclusion
DFuture Work
\square Publications

Introduction

\checkmark Social networking sites are powerful
\checkmark Facebook: 1.7 bi monthly active users in 2016
\checkmark Twitter: 317 mi monthly active users in 2016
\checkmark People post everything
\checkmark Promote debates
\checkmark Demographic information is challenge to obtain
\checkmark Why is important to study demographic aspects?

Motivation

\checkmark Perspective of Systems
\checkmark Sociological point of view
\checkmark Linguistic Differences
\checkmark Gender and Race Disparities
\checkmark Gender and Race Inequalities
\checkmark Glass Ceiling
\checkmark Not available in Twitter API
\checkmark Challenge
\checkmark Design Transparent Systems

Goals

\checkmark Investigate Inequities in Terms of Visibility
\checkmark Investigate Linguistic Aspects and Topics of Interests
\checkmark Characterize Interconnections
\checkmark Design a System that Provides Data Transparency

Contributions

\checkmark Clear Insight into How Groups of Users Connect in Twitter \checkmark Linguistic Style of Writing and Topic of Interests of Demographic Groups
\checkmark Interconnections and Interactions
\checkmark Who Makes Trends? Web-base system
\checkmark Published Work

Related Work

\checkmark Demographics in Social Media
\checkmark Inequality in Twitter Visibility
\checkmark Demographics and Linguistic Analysis
\checkmark Algorithmic and Data Transparency
\checkmark Recommendation Diversity
\checkmark Fairness

Demographic Information Dataset

\checkmark Twitter Dataset
\checkmark Crawling Demographic Information
\checkmark Baseline Dataset
\checkmark Gathering Tweets
\checkmark Extraction of Topics
\checkmark Linguistic Measures
\checkmark Gathering Social Connections and Interactions
\checkmark Potential Limitations

Twitter Dataset

\checkmark Twitter Stream API
\checkmark 1\% Random Sample
\checkmark July - September 2016
$\checkmark 341,457,982$ tweets
$\checkmark 50,270,310$ users
$\checkmark 6,286,477$ users from U.S. and English tweet
\checkmark Time zone filtering

Crawling Demographic Information

\checkmark Profile Pictures URL
\checkmark Face++ API: Gender, Race, Age, and other attributes
$\checkmark 4.6$ mi users discarded (73.42\%)

- Users changed their profile picture
- Pictures. do not have a face
- Pictures have more than one face
$\checkmark 1,670,862$ U.S. users with one face

Baseline Dataset

Race	Gender		Total
	Male	Female	
Asian	$120,950(7.24 \%)$	$177,205(10.61 \%)$	$298,155(17.85 \%)$
Black	$130,954(7.84 \%)$	$107,827(6.45 \%)$	$238,781(14.29 \%)$
White	$538,625(32.23 \%)$	$595,302(35.63 \%)$	$1,133,927(67.86 \%)$
Total	$790,529(47.31 \%)$	$880,334(52.69 \%)$	$1,670,863(100 \%)$

$\checkmark 1.6$ mi users
\checkmark U.S.
$\checkmark 1$ recognized face

Baseline Dataset

Race (\%)	Gender (\%)		Total (\%)
	Male	Female	
Asian	$7.07(-3.85)$	$10.05(-11.28)$	$17.12(-10.90)$
Black	$8.17(8.53)$	$6.74(7.68)$	$14.91(11.69)$
White	$32.88(8.49)$	$35.09(-7.69)$	$67.97(1.20)$
Total	$48.12(10.91)$	$51.88(-10.91)$	100.00

\checkmark Limitations
\checkmark 304,477 random users
\checkmark Null model

$$
Z_{W h i t e}=\frac{\left|U_{W h i t e}\right|-\operatorname{mean}\left(\left|S_{W h i t e}\right|\right)}{\operatorname{std}\left(\left|S_{W h i t e}\right|\right)}
$$

$\checkmark 100$ random samples

Baseline Dataset

Demographic	Mean	Z-value	S.D.	Min	25 -perc	Median	75 -perc	Max
Male	$144,035.1 \pm 44.86$	10.91	228.88	143,544	$143,883.00$	$144,054.5$	$144,156.50$	144,680
Female	$160,441.9 \pm 44.86$	-10.91	228.88	159,797	$160,320.50$	$160,422.5$	$160,594.00$	160,933
Asian	$54,311.5 \pm 39.17$	-10.90	199.87	53,907	$54,177.25$	$54,296.5$	$54,444.00$	54,803
Black	$43,514.01 \pm 31.72$	11.69	161.85	43,196	$43,380.75$	$43,503.5$	$43,633.50$	43,887
White	$206,651.49 \pm 46.82$	1.20	238.91	205,921	$206,490.25$	$206,666.5$	$206,789.25$	207,110
Asian Male	$22,043.64 \pm 26.24$	-3.85	133.88	21,674	$21,958.75$	$22,040.5$	$22,115.50$	22,429
Asian Female	$32,267.86 \pm 28.92$	-11.28	147.56	31,900	$32,153.50$	$32,262.0$	$32,371.75$	32,667
Black Male	$23,857.98 \pm 23.81$	8.53	121.48	23,634	$23,777.75$	$23,858.0$	$23,930.00$	24,197
Black Female	$19,656.03 \pm 21.82$	7.68	111.34	19,342	$19,585.25$	$19,660.5$	$19,737.75$	19,944
White Male	$98,133.48 \pm 45.61$	8.49	232.73	97,538	$97,995.25$	$98,130.5$	$98,297.50$	98,623
White Female	$108,518.01 \pm 43.04$	-7.69	219.62	108,025	$108,348.25$	$108,501.5$	$108,688.00$	109,015

95\% confidence level

Gathering Tweets

Demographic	Mean	Median	Max
Male	$11,624.76 \pm 109.40$	3,874	$1,683,948$
Female	$12,933.40 \pm 105.89$	4,885	$1,132,964$
Asian	$14,020.92 \pm 183.73$	5,544	$1,108,525$
Black	$18,949.91 \pm 248.46$	8,245	973,225
White	$10,432.49 \pm 85.28$	3,637	$1,683,948$

Extraction of Topics

\checkmark Who Likes What Web-base Service
\checkmark List of the friends
\checkmark Manually cleaned sub-topics into:

- celebrities == famous
- actors == actor
- business == biz
- Removed: best, br, bro, new
\checkmark Top 20: by frequency

Extraction of Topics

Actors	actors, actresses, actress, actor	140,647
Media	sports news, tech news, newspapers, music news,	135,849
	breaking news, world news, news media, radio, internet,	
	social media, youtube, sports media, magazines,	
Writers	magazine	126,051
Bloggers	briters	110,699
Business	bloggers, blogs, blog	107,361
Sports	sports, football, basketball, baseball, soccer, futbol,	93,611
	basket, martial arts, sport, mma, golf, cricket, boxing,	
Movie	motorsports, f1, racing	88,863
Organizations	movie, movies, film, films	organizations, nfl, nba, mlb, nhl, ufc, lfc, lgbt
Technology	technology, tech, iphone, digital, geek, software,	82,568
	computer, electronic, android, xbox, mac, gadgets,	72,137
Politics	programming, geeks	
Companies	politics, government, political, politicians, politician	64,735
	companies, apple, company, microsoft, google	53,128

Linguistic Measures

\checkmark Linguistic Inquiry and Word Count $\checkmark 6$ groups: (LIWC)
\checkmark Super text of tweets
$\checkmark 3$ categories:

- Affective
- Cognitive - Linguistic Style
$\checkmark 36$ features
- Affective Attributes
- Cognitive Attributes
- Lexical Density and Awareness
- Temporal References
- Social/Personal Concerns
- Interpersonal Focus

Gathering Social Connections and Interactions

\checkmark Followers and Friends
\checkmark Unfeasible due to Face++
\checkmark Randomly Select 6,000 users
\checkmark Gather their friends (max of 5,000)

- Most recent
- All friends: 98.51\%
\checkmark Gather demographic information
- At least 5\% of users
- Avg. 10.15\% and median: 9.40\%
\checkmark Interactions based on RT and mentions
\checkmark Crawled all tweets (max of 3,200) for each user
\checkmark Identified users mentioned or retweeted
\checkmark Gather Demographic Information
- 5\% of retweeters and who mentioned

Gathering Social Connections and Interactions

	White	Black	Asian	Total
Male	151,840	52,437	24,299	228,576
Female	137,010	31,011	32,100	200,121
Total	288,850	83,448	56,399	428,697

$>$ Number of Friends

	White	Black	Asian	Total
Male	246,879	109,744	51,370	407,993
Female	202,338	60,108	71,137	333,583
Total	449,217	169,852	122,507	741,576

$>$ Number of Interactions

Potential Limitations

F. ${ }^{3}$ FACE ${ }^{(1+1+2}$

HTTP://JOHNNATAN.ME

Inequality in Visibility

\checkmark Analyze the Association of Demographic Aspects with Visibility
\checkmark Discover Possible Inequalities
\checkmark Audience Size: Followers and Lists
\checkmark Gender Inequality
\checkmark Race Inequality
\checkmark Taking Together Gender and Race Inequality

Gender Inequality

\checkmark Males tend to be more followed
\checkmark Glass Ceiling
\checkmark Gender Disparity

Gender Inequality

\checkmark Males tend to be more listed
\checkmark Glass Ceiling
\checkmark Gender Disparity

Race Inequality

\checkmark White tend to be more followed
\checkmark Glass Ceiling
\checkmark Race Disparity

Race Inequality

\checkmark White tend to be more listed
\checkmark Glass Ceiling
\checkmark Race Disparity

Taking Together Gender and Race Inequality

\checkmark White male tend to be more followed \checkmark Also Glass Ceiling for males
\checkmark Group Disparity

Taking Together Gender and Race Inequality

\checkmark White male tend to be more listed
\checkmark Also Glass Ceiling for males
\checkmark Group Disparity

Taking Together Gender and Race Inequality

Race	Followers		Listed	
	Male	Female	Male	Female
Asian	-10.60	-32.70	-16.36	-29.61
Black	+7.17	-57.73	-15.90	-34.20
White	+28.56	-5.84	+18.15	+5.04

\checkmark Top 1\%

HTTP://JOHNNATAN.ME

Linguistic Patterns

\checkmark Linguistic Differences

- Mean Absolute Differences
- Wilcoxon Rank Sum Test
- Attributes
- Affective
- Cognitive
- Lexical Density and Awareness
- Temporal References
- Interpersonal Focus
\checkmark Differences in Topic Interests

Linguistic Differences

Mean Absolute Differences Between Male and Female Users

Linguistic Differences

Mean Absolute Differences Between White and Black/Asian Users

Linguistic Differences

Mean Absolute Differences Between Black and White/Asian Users

Linguistic Differences

Mean Absolute Differences Between Asian and White/Black Users
$\mu($ male $) \quad \mu($ female $)$

Affective attributes		z	
anger	0.0055	0.0056	4.733
anxiety	0.0016	0.0019	-74.534
sadness	0.0029	0.0034	-74.394
swear	0.0023	0.0026	-7.411
Cognitive attributes			

Cognitive attributes

Cognition			
causation	0.0101	0.0104	-18.627
certainty	0.0101	0.0111	-60.593
tentativeness	0.0136	0.0141	-14.641
Perception			
see	0.00957	0.0099	-24.538
hear	0.0055	0.0056	-0.033^{*}
feel	0.0035	0.0041	-70.766
percepts	0.0207	0.0218	-41.373
insight	0.0115	0.0125	-46.806
relative	0.1014	0.0999	18.026
Lexical Density	and Awareness		
verbs	0.1103	0.1170	-45.808
auxiliary verbs	0.0539	0.0583	-46.441
articles	0.0370	0.0340	77.303
prepositions	0.0843	0.0817	32.596
conjunctions	0.0279	0.0314	-72.098
adverbs	0.0317	0.0355	-66.915
Tempporal references		-62.110	
present tense	0.0802	0.0871	-15.118
future tense	0.0103	0.0106	

Social/Personal Concerns

family	0.0026	0.0034	-93.252
friends	0.0028	0.0033	-66.168
social	0.0938	0.1021	-77.896
health	0.0037	0.0044	-76.446
religion	0.0024	0.0025	-26.485
bio	0.0157	0.0203	-102.681
body	0.0045	0.0056	-58.386
achievement	0.0116	0.0105	65.265
home	0.0022	0.0026	-74.049
sexual	0.0011	0.0012	-18.691
death	0.0014	0.0013	29.463
Interpersonal focus			
1st p. singular	0.0245	0.0340	-97.329
1st p. plural	0.0046	0.0045	4.309
2nd p.	0.0160	0.0198	-88.482
3rd p.	0.0030	0.0031	$-3.371^{* * *}$

- females tend to use anxiety and sadness terms and phrases.
- males express with anger in their tweets
- females are more likely to write phrases that express cognition and perception.
- females express more confidence and feelings in their writing.
- females make more use of verbs, auxiliary verbs, conjunctions, and adverbs, while males use more articles and prepositions.
- The temporal references attributes are more present in the females.
- Social/Personal Concerns such as family, bio, friends, social, health, are used more by females
- Concern of achievement is expressed more in male
- Females also have a higher tendency to write in the first person singular and in second person
- Males use the first person plural

	$\mu($ White $)$	$\mu($ Black $)$	$\mu($ Asian $)$	$z_{W / B-A}$	$z_{B / W-A}$	$z_{A / W-B}$
Affective attributes						
anger	0.0051	0.0081	0.0056	-67.261	94.610	-5.236
anxiety	0.0017	0.0019	0.0016	-0.696	33.789	-30.517
sadness	0.0031	0.0034	0.0032	-20.814	28.205	-0.625
swear	0.0021	0.0064	0.0027	-90.375	107.344	11.329

Cognitive attributes						
Cognition						
	0.0104	0.0105	0.0096	29.931	19.465	-54.832
causation	0.0105	0.0116	0.0101	-19.404	62.239	-33.955
certainty	0.0138	0.0152	0.0130	-8.958	55.174	-40.226
tentativeness						
Perception						
see	0.0098	0.0098	0.0095	18.756	6.970	-29.506
hear	0.0055	0.0062	0.0054	-26.349	62.137	-25.331
feel	0.0037	0.0044	0.0039	-44.180	63.963	-5.128
percepts	0.0212	0.0223	0.0210	-14.067	43.711	-23.308
insight	0.0122	0.0128	0.0112	11.133	40.420	-51.201
relative	0.1020	0.1012	0.0936	50.614	15.841	-76.870

- Black users tend to express more anger and swear than White/Asian.
- Cognitive attributes, almost all features were more present in Black users texts
- Black users have more presence in features like verbs, auxiliary verbs, conjunctions, and adverbs
- Prepositions are more present among White users.
- Black people tend more to use terms related to family, social, religion, and body.
- There is a predominance in the use of first person plural for White
- first person singular, second person and third person are more prominent in the Black group.

Linguistic Differences

| | | Rank(female) | Rank(male) |
| ---: | :---: | :---: | :---: | Diff(F-M)

- Phrases expressing negation are in the top positions for both males and females. It is also clear to see that
- Females are more into signs than males since phrases with this kind of content present higher differences in the gender ranking.
- It is common the usage of slangs like "do n't", "ca n't" and "wan na" for both genders.

- 6,000 users

Linguistic Differences

	Rank(White)	Rank(Black)	Rank(Asian)	Diff($\mathrm{W}-\mathrm{B}$)	Diff($\mathbf{W - A}$)	Diff(B-A)
i do n't	1	1	1	0	0	0
i can't	2	2	2	0	0	0
can't wait	3	18	7	15	4	11
you do n't	4	4	3	0	1	1
i 'm not	5	8	6	3	1	2
i love you	6	33	4	27	2	29
i 'm so	7	16	6	9	1	10
do n't know	8	19	11	11	3	8
it 's a	9	26	16	17	7	10
one of the	10	48	20	38	10	28
i want to	11	47	10	36	1	37
! i 'm	12	46	29	34	17	17
if you 're	13	28	19	15	6	9
thank you for	14	126	28	112	14	98
it 's not	15	34	32	19	17	2
and i 'm	16	58	21	42	5	37
you ca n't	17	17	17	0	0	0
i 'm at	18	53	26	35	8	27
n't wait to	19	100	51	81	32	49
i liked a	20	7	ne	13	-	-

- Phrases containing expressions like " i don't", " i can't" and "i'm not" appear in the top positions for all the racial groups.
- Difference in ranking of the expression "i love you"
- White and Asian users seem to be more likely to tweet contents with this expression than Black users.
- The expression "i want to" appears more often in the writing of White and Asian users than in the Blacks.

- 6,000 users

Differences in Topics

HTTP://JOHNNATAN.ME

Differences in Topics

White vs Asian

Differences in Topics

White vs Black
HTTP://JOHNNATAN.ME

Differences in Topics

Demographic Group Interconnections

\checkmark Analyze the Interconnections and Interactions of Demographic Groups
\checkmark Gender and its Interconnections

- Probabilistic Graph
\checkmark Race and its Interconnections
- Probabilistic Graph
\checkmark Demography of Interconnections
- Relative Increase or Decrease from What We Would Expect
\checkmark Dataset
- 448,697 users

Gender and its Interconnections

\checkmark What we would expect

Race (\%)	Gender (\%)		Total (\%)
	Male	Female	
Asian	$7.07(-3.85)$	$10.05(-11.28)$	$17.12(-10.90)$
Black	$8.17(8.53)$	$6.74(7.68)$	$14.91(11.69)$
White	$32.88(8.49)$	$35.09(-7.69)$	$67.97(1.20)$
Total	$48.12(10.91)$	$51.88(-10.91)$	100.00

\checkmark Male and female users take responsibility

Race and its Interconnections

Race (\%)	Gender (\%)		Total (\%)
	Male	Female	
Asian	$7.07(-3.85)$	$10.05(-11.28)$	$17.12(-10.90)$
Black	$8.17(8.53)$	$6.74(7.68)$	$14.91(11.69)$
White	$32.88(8.49)$	$35.09(-7.69)$	$67.97(1.20)$
Total	$48.12(10.91)$	$51.88(-10.91)$	100.00

${ }^{0.38} \sqrt{ } \sqrt{ }$ White users tend to be the

 most followed by users
Demography of Interconnections

Leverage Demographic Aspects to Design Transparent Systems

\checkmark Demographics aspects are valuable to provide transparency
\checkmark White House Suggests More Transparency in Systems
\checkmark Twitter Trending Topics

- Who Makes Trends? Web-based System
\checkmark Google Suggestion

Who Makes Trends?

\checkmark Real-time Web-based System
\checkmark Trend Promoters
\checkmark Trend Adopters
\checkmark Gender, Race, and Age
\checkmark US-based Twitter Users

\checkmark 1\% Random Sample
\checkmark http://twitter-app.mpi-sws.org/who-makes-trends/

Who Makes Trends? Discover the Demographics of Twitter Trend Promoters

Search Trends by Date

Select the date

Sample Trends with High Demograhic Bias

High Gender Bias:

High Racial Bias:
\#wwefastlane \#footballmovies \#ufcphoenix \#janethevirgin \#thebachelor
\#thankyoutrump \#obamacare \#neweditionbet \#dow2ok \#scotus

High Age Bias: \#healthiercelebs \#dangerouswomantour \#presidentialtvshows \#wednesdaywisdom \#nationalloveyourpetday

How it Works

Who Makes Trends? Understanding Demographic Biases in Crowdsourced Recommendations 11th International AAAI Conference on Web and Social Media (ICWSM). Montreal, Canada. May 2017.

MPI-SWS, Germany
Krishna P. Gummadi

Who Are We?
 IIT Kharagpur, India
 Abhijnan Chakraborty Saptarshi Ghosh Niloy Ganguly

UFMG, Brazil
Johnnatan Messias Fabricio Benevenuto

Who Makes Trends?

Search Trends by Text

obama	Q
\#obamacare	emog
\#obamafarewell	elor
\#thanksobama	
\#thankyouobama	\#thankyouobamas

Search Trends by Date

[ahic]	1						
	«	May 2017					
	Su	Mo	Tu	We	Th	Fr	Sa
	30	1	2	3	4	5	6
	7	8	9	10	11	12	13
n \#nation	14	15	16	17	18	19	20
	21	22	23	24	25	26	27
	28	29	30	31	1	2	3
	4	5	6	7	8	9	10

Data collection

\checkmark 1\% Random Sample US Tweets in English $\checkmark 1 \%$ Worldwide < 1\% US
\checkmark Bounding Box
\checkmark Trending Topics of Twitter (every 5-min)
\checkmark EST Time Zone
\checkmark Twitter Stream API
\checkmark Since January 2017
\checkmark Demographic Information From Face++

Trending Topic Analysis

Baseline	Gender (\%)		Race (\%)			Age Group (\%)			
	Male	Female	White	Black	Asian	Adolescent	Young	Mid-aged	Old
$\begin{gathered} \text { U.S. } \\ \text { Population } \end{gathered}$	49.20	50.80	72.40	12.60	4.80	13.60	26.70	33.20	13.50
Twitter Population	45.97	54.03	73.05	12.25	14.70	26.37	62.58	10.80	0.25

Hashtag	Date	\#Promoters With Demographic Inference	\#Promoters Without Demographic Inference	\#Adopters With Demographic Inference	\#Adopters Without Demographic Inference	\#Total With Demographic Inference	\#Total Without Demographic Inference
\#mayday2017	02-05-2017	609	532	162	165	736	660
\#metgala	01-05-2017	1563	616	491	257	1988	830
\#wwepayback	30-04-2017	862	660	88	70	912	695
\#climatemarch	29-04-2017	637	582	155	142	753	694
\#fyrefestival	28-04-2017	32	15	1363	925	1384	936
\#nfldraft	27-04-2017	4846	3635	2318	1873	6183	4813
\#wednesdaywisdom	26-04-2017	317	341	77	57	383	392
\#dwts	25-04-2017	360	188	89	51	435	232
\#mondaymotivation	24-04-2017	673	717	141	131	803	840
\#sundayfunday	23-04-2017	678	613	153	112	812	712
\#earthday	22-04-2017	2636	2719	3105	2618	5531	5123
\#ripprince	21-04-2017	453	300	171	104	603	393
\#happy420	20-04-2017	805	567	132	121	918	661
\#bostonmarathon	19-04-2017	789	598	282	225	1005	778
\#unicornfrappuccino	18-04-2017	36	13	1712	996	1737	1005
\#cleveland	17-04-2017	709	442	406	355	1049	711
\#eastersunday	16-04-2017	64	77	1570	1233	1616	1300
\#aprilthegiraffe	15-04-2017	810	421	76	56	872	467
\#goodfriday	14-04-2017	1674	1422	862	640	2452	1996
\#stanleycup	13-04-2017	369	303	600	493	842	709
\#bucciovertimechallenge	12-04-2017	171	244	770	992	867	1137
\#nationalpetday	11-04-2017	2637	1887	1455	891	4056	2744
\#nationalsiblingsday	10-04-2017	3828	1837	2512	1202	6296	3023
\#sundayfunday	09-04-2017	775	585	181	130	939	705
\#nationalbeerday	08-04-2017	1188	1581	368	333	1529	1876
\#syria	07-04-2017	1263	856	654	472	1771	1217
\#themasters	06-04-2017	420	452	3015	2513	3225	2771
\#13reasonswhy	05-04-2017	280	87	985	363	1225	439
\#nationalchampionship	04-04-2017	3376	2561	238	174	3533	2682
\#finalfour	03-04-2017	4146	3448	851	618	4739	3887
\#openingday	02-04-2017	1732	1342	4129	3437	5461	4506

Demo

HTTP://JOHNNATAN.ME

Disparate Demographics

Hashtag	Demographics of Promoters								
	Gender (\%)		Race(\%)			Age Group (\%)			
	Male	Female	White	Black	Asian	Adolescent	Young	Mid-aged	
\#footballmovies	$\mathbf{6 5 . 8 2}$	34.18	$\mathbf{8 3 . 5 5}$	5.06	11.39	10.13	$\mathbf{7 0 . 8 8}$	$\mathbf{1 8 . 9 9}$	
\#ufcphoenix	$\mathbf{7 7 . 0 3}$	22.97	73.65	10.81	15.54	16.89	$\mathbf{7 1 . 6 2}$	11.49	
\#thebachelor	15.61	$\mathbf{8 4 . 3 9}$	$\mathbf{8 4 . 6 9}$	4.94	10.37	29.82	64.94	5.24	
\#thankyoutrump	49.55	50.45	$\mathbf{8 1 . 9 8}$	8.11	9.91	21.62	54.96	$\mathbf{2 2 . 5 2}$	
\#obamacare	$\mathbf{5 8 . 1 1}$	41.89	$\mathbf{8 3 . 7 8}$	6.76	9.46	13.51	51.26	$\mathbf{3 2 . 4 3}$	
\#neweditionbet	40.66	$\mathbf{5 9 . 3 4}$	28.27	58	13.73	$\mathbf{3 3 . 5 1}$	59.93	6.49	
\#dangerouswomantour	36.67	$\mathbf{6 3 . 3 3}$	71.67	8.33	$\mathbf{2 0}$	$\mathbf{4 3 . 3 3}$	50	6.67	
\#presidentialtvshows	$\mathbf{6 8 . 3 1}$	31.69	$\mathbf{8 0 . 3 3}$	10.93	8.74	8.20	$\mathbf{7 2 . 6 7}$	$\mathbf{1 8 . 5 8}$	
\#nationalloveyourpetday	28.49	$\mathbf{7 1 . 5 1}$	$\mathbf{8 0 . 2 7}$	8.04	11.69	26.94	63.29	9.77	

-High Gender Bias

- High Race Bias
-High Age Bias

Conclusion

\checkmark Demographic Aspects are Valuable
\checkmark Gender and Race Inequality Exists in Twitter
\checkmark Glass Ceiling also Happens for Male Users
\checkmark Demographic Groups have its Own Preferences

- Linguistic Style
- For Topic Interests
\checkmark The Connections Among Demographic Groups Help to Explain Inequality
\checkmark Provide Transparent Systems is Important
- Who Makes Trends?
\checkmark Potential Limitations

Conclusion

Future Work

\checkmark Explore Age as a Demographic Aspect
\checkmark Linguistic and Social features for Gender and Race Prediction
\checkmark Information Propagation Through Demographic Groups
\checkmark Compile the Results and Submit to a Journal
\checkmark Release our Demographic Dataset under Request

13 papers

- Conferences
-2 x IEEE/ACM ASONAM 2016
- BraSNAM 2015
- ACM CSCW 2017
- 2 x ACM Hypertext 2017
- AAAI ICWSM 2017
- SBBD 2015
- SOUPS 2016

Webmedia 2015
WI 2017
>Journals

- IEEE Internet Computing 2017
- Springer SNAM 2017

Max
Planck
Institute
for
Software Systems

Publications: Demographics

White, Man, and Highly Followed: Gender and Race Inequalities in Twitter. Johnnatan Messias, Pantelis Vikatos, and Fabrício Benevenuto. In Proceedings of the IEEE/WIC/ACM International Conference on Web Intelligence (WI'17). Leipzig, Germany. August 2017.

Demographics of News Sharing in the U.S. Twittersphere. Julio C. S. Reis, Haewoon Kwak, Jisun An, Johnnatan Messias, and Fabrício Benevenuto.In Proceedings of the 28th ACM Conference on Hypertext and Social Media (HT'17). Prague, Czech Republic. July 2017.

Linguistic Diversities of Demographic Groups in Twitter. Pantelis Vikatos, Johnnatan Messias, Manoel Miranda, and Fabrício Benevenuto. In Proceedings of the 28th ACM Conference on Hypertext and Social Media (HT'17). Prague, Czech Republic. July 2017.

Who Makes Trends? Understanding Demographic Biases in Crowdsourced Recommendations. Abhijnan Chakraborty, Johnnatan Messias, Fabrício Benevenuto, Saptarshi Ghosh, Niloy Ganguly, and Krishna P. Gummadi. In Proceedings of the Int'I AAAI Conference on Web and Social (ICWSM'17). Montreal, Canada. May 2017.

Quantifying Search Bias: Investigating Sources of Bias for Political Searches in Social Media. Juhi Kulshrestha, Motahhare Eslami, Johnnatan Messias, Muhammad Bilal Zafar, Saptarshi Ghosh, Krishna P. Gummadi, and Karrie Karahalios. In Proceedings of the ACM Conference on Computer Supported Cooperative Work and Social Computing (CSCW'17). Portland, Oregon, USA, February 2017.

Publications: Other Topics

An Evaluation of Sentiment Analysis for Mobile Devices. Johnnatan Messias, João P. Diniz, Elias Soares, Miller Ferreira, Matheus Araújo, Lucas Bastos, Manoel Miranda, and Fabrício Benevenuto. In Springer Nature Social Network Analysis and Mining. Volume 7, Issue 1, 2017.

Longitudinal Privacy Management in Social Media: The Need for Better Controls. Mainack Mondal, Johnnatan Messias, Saptarshi Ghosh, Krishna P. Gummadi, and Aniket Kate. IEEE Internet Computing (Special Issue on Usable Privacy \& Security). Volume 21, Issue 3, May-June, 2017.

From Migration Corridors to Clusters: The Value of Google+ Data for Migration Studies. Johnnatan Messias, Fabrício Benevenuto, Ingmar Weber, and Emilio Zagheni. In Proceedings of the IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM'16). San Francisco, USA. August 2016.

Towards Sentiment Analysis for Mobile Devices. Johnnatan Messias, João P. Diniz, Elias Soares, Miller Ferreira, Matheus Araújo, Lucas Bastos, Manoel Miranda, and Fabrício Benevenuto. In Proceedings of the IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM'16). San Francisco, USA. August 2016.

Publications: Other Topics

Forgetting in Social Media: Understanding and Controlling Longitudinal Exposure of Socially Shared Data. Mainack Mondal, Johnnatan Messias, Saptarshi Ghosh, Krishna P. Gummadi, and Aniket Kate. In Proceedings of the 12th Symposium on Usable Privacy and Security (SOUPS'16), Denver, CO, USA, June 2016.

Algoritmos de Aprendizado de Máquina para Predição de Resultados das Lutas de MMA. Leandro A. A. Silva, Johnnatan Messias, Mirella M. Moro, Pedro O. S Vaz de Melo, and Fabrício Benevenuto. In Proceedings of the 30th Brazilian Symposium on Databases (SBBD'15). Petrópolis, Brazil. October, 2015.

Brazil Around the World: Characterizing and Detecting Brazilian Emigrants Using Google+. Johnnatan Messias, Gabriel Magno, Fabrício Benevenuto, Adriano Veloso, and Virgílio Almeida. In Proceedings of 21st Brazilian Symposium on Multimedia and the Web (WebMedia'15). Manaus, Brazil. October, 2015.

Bazinga! Caracterizando e Detectando Sarcasmo e Ironia no Twitter. Pollyanna Gonçalves, Daniel Dalip, Julio C. S. Reis, Johnnatan Messias, Filipe Ribeiro, Philipe Melo, Leandro A. A. Silva, Marcos Gonçalves, and Fabrício Benevenuto. In Proceedings of the Proceedings of the Brazilian Workshop on Social Network Analysis and Mining (BraSNAM). Recife, Brazil. July, 2015.

HTTP://JOHNNATAN.ME

